Analisis Kestabilan Model SVEI1I2R terhadap Pandemik Covid-19

Authors

  • Sisca Sri Dewi Saragih Universitas Royal
  • Sariyani Kudadiri Universitas Royal

Keywords:

Covid-19, Stability

Abstract

Covid-19 is a serious health problem that occurs globally, including in Indonesia. Mathematical modeling is one way to see how the spread of the Covid-19 pandemic is developing. The model used in this study is SVEI1I2R and its stability will be seen. The article discusses the stability of fixed points using the Jacobian matrix and the Routh-Hurwitz criterion as well as the Castilo-Chaves and Song Theorems, reproduction numbers, and their numerical analysis. The results of the analysis show that the stability of fixed points is related to the basic reproduction number determined by the next-generation matrix, stability analysis in accordance with the theorem and the distribution of the population is shown in a numerical graph.

Downloads

Download data is not yet available.

Published

2024-12-31

How to Cite

Sisca Sri Dewi Saragih, & Sariyani Kudadiri. (2024). Analisis Kestabilan Model SVEI1I2R terhadap Pandemik Covid-19. Journal of Education, Learning and Technology, 1(2), 46–55. Retrieved from https://journal.beta-academia.com/index.php/joeltech/article/view/35