Perbandingan Metode C45 dan Naive Baiyes untuk Sistem Prediksi Pemilihan Jurusan di SMK Muhammadiyah 10 Kisaran

Authors

  • Dina Pertiwi Sekolah Tinggi Manajemen Informatika dan Komputer Royal
  • Khairunnisa Sekolah Tinggi Manajemen Informatika dan Komputer Royal
  • Sri Damayanti

Keywords:

C45 Method, Naïve Bayes, Python, Accuracy

Abstract

This research is motivated by the large number of prospective students who simply choose a major when they want to enter a vocational school without considering their abilities. The Decision Tree or C45 method is used because it is able to make decision trees that are easy to describe, and has a level of efficiency in handling discrete and numeric attribute data. While the Naive Bayes method is used because it has a high accuracy of results. This research was conducted based on data from students of SMK Muhammadiyah 10 Kisaran which contained questions about feelings of wrong majors, interests, and determinants of other majors. Data is divided into 2 labels, namely free labels (y) and bound labels (x). Followed by dividing the dataset into training data and testing data with a ratio of 70:30 in both methods to get the level of accuracy. From the results given, it can be seen that the C45 algorithm has an accuracy of 85% and the Naive Bayes algorithm has an accuracy of 26%. This shows that the C45 algorithm is more effective in classifying the available datasets compared to the Naive Bayes.

References

Rusdiansyah, “Analisis Keputusan Menentukan Jurusan Pada Sekolah Menengah dengan Netode Simple Additive Weighting,” J. Techno Nusa Mandiri, vol. XIV, no. 1, pp. 49–56, 2017.

Julizal, Lukman, and I. Sunoto, “Sistem Pendukung Keputusan Pemilihan Jurusan Smk Adi Luhur,” Julizal al / Sist. Pendukung Keputusan Pemilihan, vol. 2, no. 1, pp. 366–375, 2021.

M. Rahmayu and R. K. Serli, “Sistem Pendukung Keputusan Pemilihan Jurusan Pada Smk Putra Nusantara Jakarta Menggunakan Metode Analytical Hierarchy Process (AHP),” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 551–564, 2019, [Online]. Available: https://jurnal.umk.ac.id/index.php/simet/article/view/2022

V. Anestiviya, A. Ferico, and O. Pasaribu, “Analisis Pola Menggunakan Metode C4.5 Untuk Peminatan Jurusan Siswa Berdasarkan Kurikulum (Studi Kasus : Sman 1 Natar),” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 80–85, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

M. F. Rifai, H. Jatnika, and B. Valentino, “Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS),” Petir, vol. 12, no. 2, pp. 131–144, 2019, doi: 10.33322/petir.v12i2.471.

P. B. N. Setio, D. R. S. Saputro, and Bowo Winarno, “Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020.

M. W. Prihatmono and A. F. Watratan, “Implementasi Algoritma C4.5 Menggunakan Python Untuk Klasifikasi Kepuasan Konsumen,” Progres, pp. 49–55, 2019, [Online]. Available: https://jurnal.stmikprofesional.ac.id/index.php/Progress/article/view/146/22

F. Ekawati, F. T. Informasi, U. Islam, K. Muhammad, A. Al, and B. Banjarmasin, “ALGORITMA NAÏVE BAYES UNTUK PENENTUAN JURUSAN,” vol. 9, no. 1, 2018.

S. Syarli and A. A. Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan ( Studi Kasus : Data Mahasiswa Baru Perguruan Tinggi ),” vol. 2, no. 1, pp. 22–26, 2016.

R. A. Anggraini, G. Widagdo, A. S. Budi, and M. Qomaruddin, “Penerapan Data Mining Classification untuk Data Blogger Menggunakan Metode Naïve Bayes,” J. Sist. dan Teknol. Inf., vol. 7, no. 1, p. 47, 2019, doi: 10.26418/justin.v7i1.30211.

I Komang Setia Buana, “Implementasi Aplikasi Speech to Text untuk Memudahkan Wartawan Mencatat Wawancara dengan Python,” J. Sist. dan Inform., vol. 14, no. 2, pp. 135–142, 2020, doi: 10.30864/jsi.v14i2.293.

F. S. Pamungkas, B. D. Prasetya, and I. Kharisudin, “Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 692–697, 2020, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/article/view/37875

Published

2024-07-31

How to Cite

Pertiwi, D., Khairunnisa, & Damayanti, S. (2024). Perbandingan Metode C45 dan Naive Baiyes untuk Sistem Prediksi Pemilihan Jurusan di SMK Muhammadiyah 10 Kisaran. Journal of Artificial Intelligence and Data Engineering, 1(1), 28–34. Retrieved from https://journal.beta-academia.com/index.php/jaide/article/view/16