Pemanfaatan K-Means Clustering untuk Optimalisasi Penjualan Produk Roti Berdasarkan Data Penjualan Harian
Keywords:
Sales, Bread Products, K-Means Clustering, ClustersAbstract
Bread product sales have become an important aspect of the bakery business, influenced by fluctuations in demand that are not easily predictable. Efficient sales management requires a deep understanding of sales patterns. This study aims to optimize bread product sales by using the K-Means Clustering algorithm to analyze daily sales performance at Toko Roti Amin. The data used includes sales volume and transaction frequency for bread products, consisting of 356 data points. The results show that the bread products can be grouped into three clusters: 129 data in the “Good Sales” cluster, 28 data in the “Moderate Sales” cluster, and 199 data in the “Low Sales” cluster. These findings assist bakery owners in managing stock, production planning, and more targeted marketing strategies. Although there are limitations in using K-Means Clustering, such as dependence on the initial centroid selection, this study proves that applying this technique can enhance inventory management and maximize profit in the bakery business.
References
P. Primadona and R. Fauzi, “Penerapan Data mining Pada Penjualan Produk Elektronik,” Comput. Sci. Ind. Eng., vol. 9, no. 4, 2023, doi: 10.33884/comasiejournal.v9i4.7712.
F. Y. Silpa et al., “Strategi Optimalisasi Manajemen Inventaris Dan Penjualan Di Toko SRC FIO,” vol. 02, no. 01, pp. 323–332, 2024.
A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 51, 2020, doi: 10.30865/mib.v4i1.1784.
Y. Hartati, S. Defit, and G. W. Nurcahyo, “Klasterisasi Bibit Terbaik Menggunakan Algoritma K-Means dalam Meningkatkan Penjualan,” J. Inform. Ekon. Bisnis, vol. 3, pp. 4–10, 2021, doi: 10.37034/infeb.v3i1.56.
N. Noviyanto, “Penerapan Data mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 183–188, 2020, doi: 10.31294/p.v22i2.8808.
A. A. Aldino, D. Darwis, A. T. Prastowo, and C. Sujana, “Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency,” J. Phys. Conf. Ser., vol. 1751, no. 1, 2021, doi: 10.1088/1742-6596/1751/1/012038.
N. Hendrastuty, “Penerapan Data mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” J. Ilm. Inform. Dan Ilmu Komput., vol. 3, no. 1, pp. 46–56, 2024, [Online]. Available: https://doi.org/10.58602/jima-ilkom.v3i1.26
T. Hidayat, “Klasifikasi Data Jamaah Umroh Menggunakan Metode K-Means Clustering,” J. Sistim Inf. dan Teknol., vol. 4, pp. 19–24, 2022, doi: 10.37034/jsisfotek.v4i1.115.
I. Syafrinal and E. L. Febrianti, “Penerapan Algoritma K-Means Pada Aplikasi Data mining Untuk Menentukan Pola Penjualan (Studi Kasus: Zahra Mart),” J. Digit, vol. 13, no. 1, p. 31, 2023, doi: 10.51920/jd.v13i1.320.
W. Handoko and A. Nasution, “Implementation of Data mining By Using K-Means To Classify Marriage Age,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 9, no. 2, pp. 161–166, 2023, doi: 10.33330/jurteksi.v9i2.2045.
S. Asyuti and A. A. Setyawan, “Data mining Dalam Penggunaan Presensi Karyawan Denga Cluster Means,” J. Ilm. Sains Teknol. Dan Inf., vol. 1, no. 1, pp. 01–10, 2023, [Online]. Available: https://jurnal.alimspublishing.co.id/index.php/JITI/article/download/6/6
A. D. Sidik and A. Ansawarman, “Prediksi Jumlah Kendaraan Bermotor Menggunakan Machine learning,” Formosa J. Multidiscip. Res., vol. 1, no. 3, pp. 559–568, 2022, doi: 10.55927/fjmr.v1i3.745.
P. Alkhairi and A. P. Windarto, “Penerapan K-Means Cluster pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara,” Semin. Nas. Teknol. Komput. Sains, pp. 762–767, 2019, [Online]. Available: https://prosiding.seminar-id.com/index.php/sainteks/article/download/228/223
M. Ali, “Penerapan Algoritma K-Medoids untuk Klustering Bakery dan Cake yang Laris,” J. Sains dan Teknol. Inf., vol. 2, no. 4, pp. 130–135, 2023, doi: 10.47065/jussi.v2i4.4604.
M. A. Sembiring, “Penerapan Metode Algoritma K-Means Clustering Untuk Pemetaan Penyebaran Penyakit Demam Berdarah Dengue (Dbd),” J. Sci. Soc. Res., vol. 4, no. 3, p. 336, 2021, doi: 10.54314/jssr.v4i3.712.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Irwan, Adi Panca Pamungkas, Wiwin Handoko

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.