Klasifikasi Kelayakan Penerima Program Indonesia Pintar Menggunakan Metode Naive Bayes di SMP Swasta IT Al-Ikhsan
Keywords:
Indonesia Smart Program, Naive Bayes, Data Mining, ClassificationAbstract
Education plays an important role in improving the quality of human life, but economic constraints often prevent many students from continuing their education. The Smart Indonesia Program (PIP) was launched to address these issues by providing educational assistance. However, in its implementation, the selection of PIP recipients at IT Al-Ikhsan Private Junior High School is still inaccurate. This research aims to classify the eligibility of PIP recipients using the Naive Bayes method. This method is applied to student data from the school's Dapodik in 2024 which consists of 265 students. The data is processed through CRISP-DM data mining stages, namely Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. As a result, the Naive Bayes model showed an accuracy of 92.31% with a precision value for the “Yes” class of 89%, recall 100%, and F1-score 94%. In conclusion, variables such as means of transportation, KPS and KIP recipients, parents' income, and distance from home to school affect the eligibility of PIP recipients.
References
F. Mulyaningrum and H. Prasetyaning, “Jurnal Sains Ekonomi dan Edukasi Evaluasi Unsur Pengendalian Internal dalam Pengelolaan Dana,” vol. 1, no. 6, pp. 276–286, 2024.
A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 452–458, 2023, doi: 10.36040/jati.v7i1.6303.
A. Nata and S. Suparmadi, “Analisis Sistem Pendukung Keputusan Dengan Model Klasifikasi Berbasis Machine Learning Dalam Penentuan Penerima Program Indonesia Pintar,” J. Sci. Soc. Res., vol. 5, no. 3, p. 697, 2022, doi: 10.54314/jssr.v5i3.1041.
J. Informatika et al., “Analisis Dan Penerapan Algoritma Naȉve Bayes Untuk Klasifikasi Kelayakan Penerimaan Beasiswa PIP ( Studi Kasus : SMPN 7 Kota Jambi ) Jurnal Informatika Dan Rekayasa Komputer ( JAKAKOM ),” vol. 4, no. September, pp. 1051–1059, 2024, doi: 10.33998/jakakom.v4i2.
I. P. Oktavia, N. L. Anggreini, K. Pip, and N. Bayes, “IMPLEMENTASI ALGORITMA NAIVE BAYES DENGAN METODE KLASIFIKASI DALAM MENENTUKAN SISWA PENERIMA BANTUAN PROGRAM INDONESIA PINTAR ( STUDI KASUS : SMPN 3 CIHAMPELAS ),” vol. 8, no. 6, pp. 11152–11158, 2024.
A. Hadi and I. Ali, “Menentukan Kelayakan Penerima Kip Menggunakan Klasifikasi Dengan Metode Algoritma Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 366–372, 2023, doi: 10.36040/jati.v7i1.6311.
J. Aldian Sakbani Nasution, “Prediksi Penerimaan Bantuan PIP Pada SMKS Al-Furqon Batubara Dengan Metode Naïve Bayes,” JUTSI (Jurnal Teknol. dan Sist. Informasi), vol. 1, no. 3, pp. 219–226, 2021.
I. M. B. Adnyana, “Implementasi Naïve Bayes Untuk Memprediksi Waktu Tunggu Alumni Dalam Memperoleh Pekerjaan,” Semin. Nas. Teknol. Komput. Sains, vol. 1, no. 1, pp. 131–134, 2020, [Online]. Available: http://prosiding.seminar-id.com/index.php/sainteks/article/view/418
N. Widiawati, B. N. Sari, and T. N. Padilah, “Clustering Data Penduduk Miskin Dampak Covid-19 Menggunakan Algoritma K-Medoids,” J. Appl. Informatics Comput., vol. 6, no. 1, pp. 55–63, 2022, doi: 10.30871/jaic.v6i1.3266.
D. Setiadi, “Analisis Prediksi Harga Beras Berbasis Kualitas Menggunakan Algoritma K- Nearest Neighbord,” vol. 15, no. 3, pp. 106–115, 2024.
I. Priyanto, E. M. Dewanti, T. Tundo, M. Nurdin, and R. Kasiono, “Penerapan Algoritma Metode Naïve Bayes Untuk Penentuan Penerimaan Bantuan Program Indonesia Pintar (Pip),” J. Manajamen Inform. Jayakarta, vol. 4, no. 2, p. 162, 2024, doi: 10.52362/jmijayakarta.v4i2.1355.
F. Ramdhani and K. Setiawan, “Penerapan Data Mining untuk Prediksi Pelanggan di PT. XYZ Menggunakan Algoritma Linear Regression,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 490–497, 2024, doi: 10.57152/malcom.v4i2.1217.
A. Amalia, A. Irma Purnamasari, and I. Ali, “Implementasi Algoritma C4.5 Dan Naïve Bayes Dalam Pengambilan Keputusan Untuk Program Indonesia Pintar (Pip) Di Sekolah Dasar Negeri 04 Majalangu,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1889–1896, 2024, doi: 10.36040/jati.v8i2.8311.
S. Indhira and B. Hendrik, “Jurnal KomtekInfo Penerapan Metode Naïve Bayes Dalam Mengklasifikasi Penyakit ISPA di Puskesmas,” vol. 11, no. 4, pp. 197–204, 2024, doi: 10.35134/komtekinfo.v11i4.541.
Juwita Sari, Sri Wulandari, Yollanda Putry, and Wiwin Handoko, “Klasifikasi Kelayakan Penerima Program Indonesia Pintar Siswa MIS NU Dusun III Pinangripan,” J. Comput. Digit. Bus., vol. 3, no. 1, pp. 1–8, 2024, doi: 10.56427/jcbd.v3i1.239.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mayang Puspita Sari, Nadia Khairunnisa, Sarmila

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.