Penerapan Naive Bayes Untuk Prediksi Penerima BLT di SD Swasta IT ABI Husni

Authors

  • Ayu Wandira Universitas Royal
  • Nadhilla Rahmadani Universitas Royal
  • Ummi Kalsum Universitas Royal

Keywords:

Naive Bayes, BLT, CRISP-DM, Recipient Selection, Targeted Decision

Abstract

The development of information technology provides solutions for increasing efficiency and accuracy in decision-making, such as in determining students eligible for BLT at SD Swasta IT ABI Husni. This study aims to implement the Naive Bayes algorithm to support a more objective BLT recipient selection process. The method used is CRISP-DM, starting from understanding the problem, data preparation, to model implementation. The data analyzed included type of residence, KPS recipients, parents' income, KIP recipients, number of siblings, distance from home and reasons for eligibility for BLT used were data from students of SD Swasta IT ABI Husni in the odd semester of 2024/2025, with a total of 137 data. The results of the study showed that the Naive Bayes algorithm was able to achieve an accuracy level of 98% with precision and recall of up to 100%, proving the effectiveness of the model in minimizing classification errors. In conclusion, the use of the Naive Bayes algorithm can help make decisions that are more targeted, transparent, and fair in the distribution of BLT.

References

D. Ambarwati, U. B. Wibowo, H. Arsyiadanti, and S. Susanti, “Studi Literatur: Peran Inovasi Pendidikan pada Pembelajaran Berbasis Teknologi Digital,” J. Inov. Teknol. Pendidik., vol. 8, no. 2, pp. 173–184, 2022, [Online]. Available: https://doi.org/10.21831/jitp.v8i2.43560

F. Fadhila, F. Apriansyah, D. F. Reyzaki, and I. M. Sapitri, “Penerapan Metode Promethee Ii Pada Penerima Bantuan Siswa Kurang Mampu,” J. Teknol. Inf. Dan Komun., vol. 13, no. 1, pp. 20–28, 2022, doi: 10.51903/jtikp.v13i1.301.

I. Arfanda, W. Ramdhan, and R. A. Yusda, “Naive Bayes Dalam Menentukan Penerima Bantuan Langsung Tunai,” Digit. Transform. Technol., vol. 1, no. 1, pp. 9–16, 2021, doi: 10.47709/digitech.v1i1.1091.

N. S. Fauziah and R. D. Dana, “Implementasi Algoritma Naive Bayes dalam Klasifikasi Status Kesejahteraan Masyarakat Desa Gunungsari,” Blend Sains J. Tek., vol. 1, no. 4, pp. 295–305, 2023, doi: 10.56211/blendsains.v1i4.234.

A. F. Boy, “Implementasi data mining dalam memprediksi harga Crude Palm Oil (CPO) pasar domestik menggunakan algoritma regresi linier berganda (Studi kasus dinas perkebunan provinsi Sumatera Utara),” J. Sci. Soc. Res., vol. 4307, no. 2, pp. 78–85, 2020.

Rayuwati, Husna Gemasih, and Irma Nizar, “IMPLEMENTASI AlGORITMA NAIVE BAYES

UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID,” Jural Ris. Rumpun Ilmu

Tek., vol. 1, no. 1, pp. 38–46, 2022, doi: 10.55606/jurritek.v1i1.127.

S. Navisa, Luqman Hakim, and Aulia Nabilah, “Komparasi Algoritma Klasifikasi Genre Musik pada Spotify Menggunakan CRISP-DM,” J. Sist. Cerdas, vol. 4, no. 2, pp. 114–125, 2021, doi: 10.37396/jsc.v4i2.162.

E. D. Nurhazizah and I. Puspitasari, “Opinion Mining Fungsi KPI (Key Performance Indikator) Dengan Algoritma Naïve Bayes Clasifier Dan Support Vector Machine (SVM),” J. Cahaya Mandalika, vol. 3, no. 2, pp. 290–302, 2023.

R. Vindua and W. Winarti, “Prediksi Kenaikan Covid-19 di Tangerang Selatan Menggunakan Metode Klasifikasi Naive Bayes,” Sci. Sacra J. Sains, Teknol. dan Masy., vol. 2, no. 3, pp. 305–316, 2022.

Supangat and M. R. Sulistyawan, “Pemodelan Prediksi Tingkat Kelulusan Mahasiswa Dengan Pendekatan Algoritma Naïve Bayes ,” J. Inform. Polinema, vol. 9, no. 4, pp. 405–414, 2023, doi: 10.33795/jip.v9i4.1367.

E. Martantoh and N. Yanih, “Implementasi Metode Naïve Bayes Untuk Klasifikasi Karakteristik Kepribadiaan Siswa Di Sekolah MTS Darussa’adah Menggunakan Php Mysql,”

J. Teknol. Sist. Inf., vol. 3, no. 2, pp. 166–175, 2022, doi: 10.35957/jtsi.v3i2.2896.

M. R. Julianto, Y. Akbar, and T. Wahyudi, “Analisis Sentimen Respon Publik Terhadap Program Internet Gratis di Platform X Melalui Pendekatan Algoritma Naïve Bayes ,” vol. 5, no. 3, pp. 2940–2950, 2024.

F. Firmansyah and A. Yulianto, “Pemodelan Pembelajaran Mesin untuk Prediksi Kesehatan Mental di Tempat Kerja,” J. Minfo Polgan, vol. 13, no. 1, pp. 397–407, 2024, doi: 10.33395/jmp.v13i1.13674.

Z. A. Dwiyanti and C. Prianto, “Prediksi Cuaca Kota Jakarta Menggunakan Metode Random Forest,” J. Tekno Insentif, vol. 17, no. 2, pp. 127–137, 2023, doi: 10.36787/jti.v17i2.1136.

J. Aldian Sakbani Nasution, “Prediksi Penerimaan Bantuan PIP Pada SMKS Al-Furqon Batubara Dengan Metode Naïve Bayes ,” JUTSI (Jurnal Teknol. dan Sist. Informasi), vol. 1, no. 3, pp. 219–226, 2021.

Published

2024-12-31

How to Cite

Ayu Wandira, Nadhilla Rahmadani, & Ummi Kalsum. (2024). Penerapan Naive Bayes Untuk Prediksi Penerima BLT di SD Swasta IT ABI Husni. Journal of Artificial Intelligence and Data Engineering, 1(2), 35–42. Retrieved from https://journal.beta-academia.com/index.php/jaide/article/view/77

Similar Articles

You may also start an advanced similarity search for this article.